High Pressure Collaborative Access Team

High Pressure Collaborative Access Team (HPCAT) is a research consortium to advance compression science in multidisciplinary fields using synchrotron radiation.

When compressed above megabar pressures (>100 GPa), glasses may undergo structural transitions into more densely packed networks that differ from those at ambient pressure. Inelastic x-ray scattering (IXS, or X-ray Raman scattering), which can probe core electron excitation from glasses in a… more

Recent discoveries of several stable dense hydrous minerals at high pressure–temperature conditions have led to an important implication of a massive water reservoir in the Earth’s lower mantle. A research team used HPCAT facility and demonstrated that (Fe,Al)OOH can be stabilized in a hexagonal… more

Topological Kondo insulator possesses characteristics of both the strong electron correlations and the topological configurations, as shown in a mixed-valence material SmB6. YbB6 is a structural analog of SmB6, but remains controversial whether compressed YbB… more

By engineering molecules with mechanically heterogeneous components with a compressible (‘soft’) mechanophore and incompressible (‘hard’) ligands, a research team has created ‘molecular anvils’, resulting in isotropic stress that leads to relative motions of the rigid ligands, anisotropically… more

At temperatures (<319 K or <46 oC) where life is sustained, water is an abnormal liquid, having a number of anomalous properties. For instance, water displays minima of isobaric heat capacity at 308 K and isothermal compressibility at 319 K which are related to entropy and… more

Knowledge on the structure and properties of silicate magma under extreme pressure plays an important role in understanding the nature and evolution of Earth’s deep interior.  However, such information is scarce owing to experimental challenges.  Using a recently developed double-stage Paris-… more

Understanding the behavior of solids under shock compression, including transformations, their pathways, and kinetics, lies at the core of contemporary static and dynamic compression science. A team led by scientists from Sandia National Laboratories is leveraging the capabilities of two sectors… more

Single crystal diamond is the hardest known material and widely used in studies on materials under extreme conditions. Nanocrystalline diamond (NCD) possesses hardness comparable to that of single crystal diamond, while also demonstrating increased fracture toughness and yield strength. Thus,… more