HPCAT

at the Advanced Photon Source

Recent HPCAT Science Highlights

Scientists from LANL’s Applied Computer Science and Shock & Detonation Physics Groups recently developed Cinema:Snap, a software tool designed for the management and visualization of very large high-pressure X-ray diffraction datasets.  Developed specifically for high compression rate dynamic diamond anvil cell (d-DAC) experiments, Cinema:Snap allows a user to visualize both raw (2D images, integrated spectra, etc.) and processed (pressure vs. frame, contour plots, etc.) data from an entire compression through a variety of user-defined views.  A description and… more

A recently published article reports a colossal resistance drop spanning eight orders of magnitude in manganese disulfide – MnS2 – as compression to moderate pressures of 12 GPa drives the material into a metallic state. This is one of the largest-known density-driven drops in resistance within a single crystallographic phase – measured by powder X-ray diffraction at HPCAT 16-ID-B.

The metallic transition is driven by a previously unidentified mechanism in which metal d states overlap with unoccupied… more

An international group of researchers which includes collaborators from Universität Bayreuth (Germany), Linköping University (Sweden), Radboud University (Netherlands), National University of Science and Technology (Russia), Wuhan University (China), and Carnegie Institution for Science (Washington, DC) using synchrotron facilities at DESY (Hamburg), GSECARS (APS), and HPCAT (APS), recently reported the discovery of a novel 2D material – Beryllonitrene (BeN4), that was synthesized at high pressure – high temperature conditions. Unlike graphene, which is a popular,… more

High-entropy materials containing a mixture of five or more elemental species represent a paradigm shift in materials science where a variety of oxides, carbides, and borides can be synthesized with superior physical and mechanical properties compared with those accessible from the constituent materials. In an endeavor to create ultrahard and high-temperature materials that retain their physical properties under extreme conditions, high entropy alloys have drawn considerable attention in recent years. In this context, high-entropy… more

Pressure-induced assembly has promising applications for fabrication of nanostructured materials from a wide range of nanocrystals with various size, shape, and composition. Using diamond-anvil compression techniques, combined with small/wide angling x-ray scattering and the x-ray diffraction tools at the Advanced Photon Source under remote operations, the team was able to characterize the structural and morphological changes in PbS and PbSe semiconductor nanocrystals. The experiments performed at HPCAT… more

Silver, a noble metal, is renowned for its purity and chemical stability at standard temperature and pressure. However, theoretical calculations and shock-physics experiments at pressures in excess of 100 GPa (1 million times greater than standard atmospheric pressure) suggest that silver’s ambient-pressure phase become unstable. A collaborative team of experimentalists and theorists from LLNL’s Condensed Matter Physics Section within the Physics Division and High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source have revealed that the face-centered-cubic phase… more

The fluctuations associated with quantum-critical points, i.e., second-order phase transitions at zero temperature, have been considered crucial for the stabilization of intriguing phenomena, such as superconductivity or non-Fermi liquid behavior. This motivates the search for novel states by tuning magnetic phase transitions towards 0 K by external parameters, such as physical pressure or chemical substitutions. For clean metallic ferromagnets, it is widely believed that quantum criticality is avoided for generic reasons. It was proposed that the metallic ferromagnet LaCrGe3 is a… more

Two recent articles from a team of researchers at Penn State University highlighted the compression of aromatic compounds to make new derivatives of diamond nanothread architectures. Nanothreads are rigid, one-dimensional ordered polymers theorized to possess extraordinary tensile strength, extreme stability over a small diameter, and unique electronic properties inaccessible by sp2-rich carbon material analogues. However, the high pressure for synthesis (often exceeding 23 GPa) prevents wide-scale commercial use. Thus, efforts to reduce the pressure… more